Temporal control is considered the fourth dimension in embryonic development and it sets the pace to attain the correct molecular patterning of the developing embryo. In this chapter we review one of the best-studied time dependent events in embryogenesis, which is the formation ofsomites. Somites are the basis of the future segmented framework of the vertebrate adult body and their reiterated appearance during the early stages of embryo development establishes the proper temporal and physical template from where other structures will develop and consequently shape the segmentation pattern of the embryo. Several models have been proposed over the last few decades to explain the mechanism(s) regulating somite periodicity, but no molecular evidence seemed to back up any of the postulated models. Remarkably, in 1997 the first evidence that the formation of the somites depended on an intrinsic molecular clock was at last provided through the description of oscillating gene expression in the tissue from which somites are generated. Since then, a huge amount of data has been and continues to be provided that is gradually revealing the ever more complex molecular mechanism underlying this segmentation clock. We are also beginning to learn about embryonic structures other than the somites which exhibit oscillations of gene expression suggesting they too are dependent upon a segmentation-like clock. This is in itself the clearest evidence that there is still a long way to go before we unveil the myriad of molecular mechanisms that lead to the time control of embryonic development.