A low-impedance capacitively coupled contactless conductivity detector (LIC (4)D) for microchip capillary electrophoresis was reported. The LIC (4)D was the series combination of a piezoelectric quartz crystal (PQC) resonator with a capacitively coupled contactless conductivity detector (C (4)D) outside on the microchip lid. The electrode impedance in the LIC (4)D was reduced because the capacitive impedance from the wall capacitance was compensated by the inductive impedance from the PQC. The operation frequency of the LIC (4)D was set at the resonant frequency of the series combination of a PQC with a C (4)D, wherein a minimum in the total impedance was obtained. It was shown that the sensitivity of LIC (4)D was much higher than that of C (4)D itself, especially in the microchip with a thick lid. Under the experimental conditions, the signal-to-noise ratios of the LIC (4)D were improved by approximately 20-50 times over those of the C (4)D. Reproducible separations of a mixture of inorganic cations (K (+), Na (+), Li (+)) were demonstrated. After a digital filter treatment by the fast Fourier transform algorithm, the detection limits were 0.38, 0.49, and 1.6 microM for K (+) in the LI C (4)D with the microchip lid thickness of 0.20, 0.40, and 1.0 mm, respectively.