Characterization of the microsomal cytochrome P450 2B4 O2 activation intermediates by cryoreduction and electron paramagnetic resonance

Biochemistry. 2008 Sep 9;47(36):9661-6. doi: 10.1021/bi800926x. Epub 2008 Aug 13.

Abstract

The oxy-ferrous complex of cytochrome P450 2B4 (2B4) has been prepared at -40 degrees C with and without bound substrate [butylated hydroxytoluene (BHT)] and radiolytically one-electron cryoreduced at 77 K. Electron paramagnetic resonance (EPR) shows that in both cases the observed product of cryoreduction is the hydroperoxo-ferriheme species, indicating that the microsomal P450 contains an efficient distal-pocket proton-delivery network. In the absence of substrate, two distinct hydroperoxo-ferriheme signals are observed, reflecting the presence of two major conformational substates in the oxy-ferrous precursor. Only one species is observed when BHT is bound, indicating a more ordered active site. BHT binding also changes the g-tensor components of the hydroperoxo-ferric 2B4 intermediate, indicating that the substrate modulates the properties of this intermediate. Step annealing the cryoreduced ternary 2B4 complex at >or=175 K causes the loss of hydroperoxo-ferric 2B4 and the parallel appearance of high-spin ferric 2B4; liquid chromatography-tandem mass spectroscopy (LC-MS/MS) analysis shows that in this process BHT is quantitatively converted to two products, hydroxymethyl BHT (1) and 3-hydroxy- tert-butyl BHT (2). This implies that the hydroperoxo-ferric 2B4 prepared by cryoreduction is catalytically active and that the high-spin state observed after annealing contains an enzyme-bound product of BHT monooxygenation. The ratio of products generated during cryoreduction and annealing (6.2/1) is significantly different from the ratio (2.5/1) at ambient temperature. These findings suggest that substrate is held more rigidly relative to the oxidizing species at low temperatures and/or that dissociation of FeOOH is inhibited at low temperature. As in experiments under ambient conditions, product formation is not observed with the inactive F429H 2B4 mutant.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Aryl Hydrocarbon Hydroxylases / chemistry*
  • Aryl Hydrocarbon Hydroxylases / genetics
  • Cytochrome P450 Family 2
  • Electron Spin Resonance Spectroscopy / methods
  • Freezing
  • Hemin
  • Microsomes / enzymology*
  • Mutation
  • Oxidation-Reduction
  • Oxygen / chemistry*

Substances

  • Hemin
  • Aryl Hydrocarbon Hydroxylases
  • Cytochrome P450 Family 2
  • cytochrome P-450 CYP2B4 (rabbit)
  • Oxygen