We perform field-based angle-resolved light-scattering measurements from single live cells. We use a laser interferometer to acquire phase and amplitude images of cells at the image plane. The angular scattering spectrum is calculated from the Fourier transform of the field transmitted through the cells. A concurrent 3D refractive index distribution of the same cells is measured using tomographic phase microscopy. By measuring transient increases in light scattering by single cells during exposure to acetic acid, we correlate the scattering properties of single cells with their refractive index distributions and show that results are in good agreement with a model based on the Born approximation.