The structure of liquid Cs(FH)(2.3)F was revealed using a combination of high-energy x-ray and neutron diffraction measurements. We found that the strongest intermolecular H-F hydrogen bonds at an average distance of 1.36 A are accompanied by the formation of a high degree of bending of the oligomer chain in the melt, with [angle]FHF=150 degrees . A reverse Monte Carlo simulation showed that the average number of atoms per chain is 4.4. A detailed chain analysis of the atomic configuration revealed that (FH)(2)F(-) oligomer chains are the major entities in the liquid, and asymmetrical FHF(-) are formed owing to the strong H-F hydrogen bonds. The results suggest that an average of one or two HF molecules bond to each of the 11 fluorine atoms surrounding a cesium ion.