Peptide and protein quantification using iTRAQ with electron transfer dissociation

J Am Soc Mass Spectrom. 2008 Sep;19(9):1255-62. doi: 10.1016/j.jasms.2008.05.023. Epub 2008 Jun 17.

Abstract

Electron transfer dissociation (ETD) has become increasingly used in proteomic analyses due to its complementarity to collision-activated dissociation (CAD) and its ability to sequence peptides with post-translation modifications (PTMs). It was previously unknown, however, whether ETD would be compatible with a commonly employed quantification technique, isobaric tags for relative and absolute quantification (iTRAQ), since the fragmentation mechanisms and pathways of ETD differ significantly from CAD. We demonstrate here that ETD of iTRAQ labeled peptides produces c- and z-type fragment ions as well as reporter ions that are unique from those produced by CAD. Exact molecular formulas of product ions were determined by ETD fragmentation of iTRAQ-labeled synthetic peptides followed by high mass accuracy orbitrap mass analysis. These experiments revealed that ETD cleavage of the N-C(alpha) bond of the iTRAQ tag results in fragment ions that could be used for quantification. Synthetic peptide work demonstrates that these fragment ions provide up to three channels of quantification and that the quality is similar to that provided by beam-type CAD. Protein standards were used to evaluate peptide and protein quantification of iTRAQ labeling in conjunction with ETD, beam-type CAD, and pulsed Q dissociation (PQD) on a hybrid ion trap-orbitrap mass spectrometer. For reporter ion intensities above a certain threshold all three strategies provided reliable peptide quantification (average error <10%). Approximately 36%, 8%, and 16% of scans identified fall below this threshold for ETD, HCD, and PQD, respectively. At the protein level, average errors were 2.3%, 1.7%, and 3.6% for ETD, HCD, and PQD, respectively.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Electrons
  • Peptide Mapping
  • Peptides / analysis*
  • Peptides / chemical synthesis
  • Proteomics / methods*
  • Reproducibility of Results
  • Spectrometry, Mass, Electrospray Ionization / methods

Substances

  • Peptides