Co-evolving motions at protein-protein interfaces of two-component signaling systems identified by covariance analysis

Biochemistry. 2008 Jul 29;47(30):7782-4. doi: 10.1021/bi8009604. Epub 2008 Jun 28.

Abstract

Short-lived protein interactions determine signal transduction specificity among genetically amplified, structurally identical two-component signaling systems. Interacting protein pairs evolve recognition precision by varying residues at specific positions in the interaction surface consistent with constraints of charge, size, and chemical properties. Such positions can be detected by covariance analyses of two-component protein databases. Here, covariance is shown to identify a cluster of co-evolving dynamic residues in two-component proteins. NMR dynamics and structural studies of both wild-type and mutant proteins in this cluster suggest that motions serve to precisely arrange the site of phosphoryl transfer within the complex.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Analysis of Variance
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Magnetic Resonance Spectroscopy
  • Protein Binding
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Proteins / chemistry*
  • Proteins / metabolism*
  • Signal Transduction*

Substances

  • Bacterial Proteins
  • Proteins
  • Spo0F protein, Bacillus subtilis