Plasticity appears to be a ubiquitous property of nervous systems, regardless of developmental stage or complexity. In the visual system of higher mammals, perceptual plasticity has been intensively studied, both during development and in adulthood. However, the last few years have seen some significant controversies arise about the existence and properties of visual plasticity after permanent damage to the adult visual system. The study of perceptual plasticity in damaged, adult visual systems is of interest for several reasons. First, it is an important means of unmasking the relative contribution of individual visual areas to visual learning, adaptation and priming, among other plastic phenomena. Second, it can provide knowledge that is essential for the development of effective therapies to rehabilitate the increasing number of people who suffer the functional consequences of damage at different levels of their visual hierarchy. This review summarizes the available evidence on the subject and proposes that visual plasticity may be just as ubiquitous after damage as it is in the intact visual system. However, damage may alter visual plasticity in ways that are still being defined.