Rationale: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood.
Objectives: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout (SERT-/-) rat and the involvement of compensatory changes in 5-HT1A receptor function are the objectives of the study.
Materials and methods: The SERT-/- rat was tested for cocaine-induced locomotor activity, cocaine-induced conditioned place preference, and intravenous cocaine self-administration. In addition, the function and expression of 5-HT1A receptors was assessed using telemetry and autoradiography, respectively, and the effect of 5-HT1A receptor ligands on cocaine's psychomotor effects were studied.
Results: Cocaine-induced hyperactivity and conditioned place preference, as well as intravenous cocaine self-administration were enhanced in SERT-/- rats. Furthermore, SERT-/- rats displayed a reduced hypothermic response to the 5-HT1A receptor agonist 8-OHDPAT. S-15535, a selective somatodendritic 5-HT1A receptor agonist, reduced stress-induced hyperthermia (SIH) in wild-type controls (SERT+/+), while it increased SIH in SERT-/- rats. As 5-HT1A receptor binding was reduced in selective brain regions, these thermal responses may be indicative for desensitized 5-HT1A receptors. We further found that both 8-OHDPAT and S-15535 pretreatment increased low-dose cocaine-induced locomotor activity in SERT-/- rats, but not SERT+/+ rats. At a high cocaine dose, only SERT+/+ animals responded to 8-OHDPAT and S-15535.
Conclusion: These data indicate that SERT-/- -associated 5-HT1A receptor adaptations facilitate low-dose cocaine effects and attenuate high-dose cocaine effects in cocaine supersensitive animals. The role of postsynaptic and somatodendritic 5-HT1A receptors is discussed.