Emerging evidence suggests that nuclear receptor (NR) coregulators have potential to act as master genes and their deregulation can promote oncogenesis. Proline-, glutamic acid-, and leucine-rich protein-1 (PELP1/MNAR) is a novel NR coregulator. Its expression is deregulated in hormone-driven cancers. However, the role of PELP1/MNAR in ovarian cancer progression remains unknown. Analysis of serial analysis of gene expression data suggested deregulation of PELP1/MNAR expression in ovarian tumors. Western analysis of PELP1/MNAR in normal and serous ovarian tumor tissues showed 3- to 4-fold higher PELP1/MNAR expression in serous tumors compared with normal ovarian tissues. To examine the significance of PELP1/MNAR in ovarian cancer progression, we have generated model cells that overexpress PELP1/MNAR and ovarian cancer cells in which PELP1/MNAR expression is down-regulated by stable expression of PELP1/MNAR-specific shRNA. Down-regulation of PELP1/MNAR in cancerous ovarian model cells (OVCAR3) resulted in reduced proliferation, affected the magnitude of c-Src and protein kinase B (AKT) signaling, and reduced tumorigenic potential of ovarian cancer cells in a nude mouse model. PELP1/MNAR overexpression in nontumorigenic immortalized surface epithelial cells (IOSE cells) promoted constitutive activation of c-Src and AKT signaling pathways and promoted anchorage-independent growth. Immunohistochemical studies using human ovarian cancer tissue arrays (n = 123) showed that PELP1/MNAR is 2- to 3-fold overexpressed in 60% of ovarian tumors, and PELP1/MNAR deregulation occurs in all different types of ovarian cancer. Collectively, these results suggest that PELP1/MNAR signaling plays a role in ovarian cancer cell proliferation and survival, and that its expression is deregulated in ovarian carcinomas.