Immunoglobulins (Igs) in uninfected humans recognize residues 421-433 located in the B cell superantigenic site (SAg) of the HIV envelope protein gp120 and catalyze its hydrolysis by a serine protease-like mechanism. The catalytic activity is encoded by germline Ig variable (V) region genes, and is expressed at robust levels by IgMs and IgAs but poorly by IgGs. Mucosal IgAs are highly catalytic and neutralize HIV, suggesting that they constitute a first line of defense against HIV. Lupus patients produce the Igs at enhanced levels. Homology of the 421-433 region with an endogenous retroviral sequence and a bacterial protein may provide clues about the antigen driving anti-SAg synthesis in lupus patients and uninfected subjects. The potency and breadth of HIV neutralization revives hopes of clinical application of catalytic anti-421-433 Igs as immunotherapeutic and topical microbicide reagents. Adaptive improvement of anti-SAg catalytic Igs in HIV infected subjects is not customary. Further study of the properties of the naturally occurring anti-SAg catalytic Igs should provide valuable guidance in designing a prophylactic vaccine that amplifies protective catalytic immunity to HIV.