Like other sessile filter-feeding molluscs, oysters may be exposed in the natural environment to a variety of contaminants. Long-term exposure to pollutants may be one factor affecting prevalence of cancerous-like disorders, such as neoplasia. Environmentally induced alterations in p53 protein expression, in relation to leukemia, have been reported in various mollusc species inhabiting polluted water, suggesting that p53 proteins can also be used as a marker for environmental research. This work reports the cloning and sequencing of a p53-like cDNA in the mollusc bivalve Crassostreagigas. The deduced amino acid sequences of p53 shared a high degree of homology with the homologues from other mollusc species, including typical eukaryotic p53 signature sequences. We examined the p53 transcription expression pattern during the annual cycle in oyster gills and whole soft tissues in four locations along the French coasts. Real-time PCR analysis suggested that strong variations at p53 mRNA level are probably synchronized with the seasonal cycle at the four locations investigated.