Electrical impedance tomography (EIT) reconstructs a conductivity change image within a body from electrical measurements on the body surface; while it has relatively low spatial resolution, it has a high temporal resolution. One key difficulty with EIT measurements is due to the movement and position uncertainty of the electrodes, especially due to breathing and posture change. In this paper, we develop an approach to reconstruct both the conductivity change image and the electrode movements from the temporal sequence of EIT measurements. Since both the conductivity change and electrode movement are slow with respect to the data frame rate, there are significant temporal correlations which we formulate as priors for the regularized image reconstruction model. Image reconstruction is posed in terms of a regularization matrix and a Jacobian matrix which are augmented for the conductivity change and electrode movement, and then further augmented to concatenate the d previous and future frames. Results are shown for simulation, phantom and human data, and show that the proposed algorithm yields improved resolution and noise performance in comparison to a conventional one-step reconstruction method.