Scopolamine-induced deficits in cognitive and motor processes have been widely demonstrated in animals and humans, although the role of acetylcholine in working memory is not as well understood. This study examined the role of acetylcholine neurotransmission in visuospatial short term and working memory using the Groton Maze Learning Test (GMLT). The GMLT is a computerized hidden maze learning test that yields measures of component cognitive processes such as spatial memory, working memory, and visuomotor function, as well as their integration in trial-and-error problem solving. Healthy older adults were administered scopolamine (0.3 mg subcutaneous), the acetlycholinesterase inhibitor donepezil (5 mg oral), scopolamine with donepezil, or placebo. Compared to placebo, low-dose scopolamine led to performance deficits on all measures of the GMLT. The greatest scopolamine-induced deficits were observed in errors reflecting working memory processes (e.g., perseverative errors d=-2.98, and rule-break errors d=-2.49) and these impairments remained robust when statistical models accounted for scopolamine-related slowing in visuomotor speed. Co-administration of donepezil partially ameliorated scopolamine-related impairments and this effect was greatest for measures of working memory than short-term memory. By itself, donepezil was associated with a small improvement in visuomotor function. These results suggest that scopolamine disrupts processes required for rule maintenance and performance monitoring, in combination with visuomotor slowing and sequential location learning.