Allergic reaction following fish consumption can trigger life-threatening reactions in predisposed individuals. Parvalbumins from different species have been identified as the major fish allergens. There are two distinct phylogenetic lineages of parvalbumins, alpha and beta. Most allergic reactions are caused by beta-parvalbumins. We cloned and expressed cDNAs encoding cod (Gadus morhua) and carp (Cyprinus carpio) beta-parvalbumins and purified natural cod beta-parvalbumin. CD spectra of the purified proteins showed that their overall secondary structure contents were very similar. No differences in thermal stability were monitored in the calcium-bound or calcium-depleted form of natural cod parvalbumin. IgE reactivity was assessed using 26 sera of fish allergic patients from Spain, The Netherlands, and Greece in immunoblot and ELISA experiments. Twenty-five of the 26 patients with IgE reactivity to native and recombinant cod parvalbumin also reacted to the recombinant carp parvalbumin. IgE inhibition assays were performed using cod and carp extracts and purified recombinant parvalbumin of cod and carp. High crossreactivity among cod and carp parvalbumins was observed in immunoblots as well as in fluid phase assays. Natural and recombinant parvalbumins gave comparable results when performing various in vitro diagnostic assays.