The physiological function of the cellular prion protein (PrP(c)) is unclear. PrP(c) associates with lipid rafts, highly glycolipid-rich membrane domains containing a large variety of signaling molecules, e.g., sphingolipids (SL). In this study, we investigated possible connections between PrP(c) and sphingolipid-associated signaling pathways. Using PrP(c)-wt and PrP(c)-k.o. hippocampal cell lines and mouse brains we showed higher activity of neutral and acid sphingomyelinase (SMase) in PrP(c)-k.o.-groups, while ceramide and sphingomyelin-levels were unchanged. Furthermore, despite lower basal expression levels of sphingosine kinase (SphK) in PrP(c)-k.o.-groups, the levels of its metabolite sphingosine-1-phosphate were increased, whereas S1P(3)-receptor expression was higher in PrP(c)-wt-groups again. In addition, we detected enhanced activity of phospholipase D1, an enzyme that seems to be suitable to act as a connector between the S1P(3) receptor and continuative signaling. Finally, evidence for an impact on downstream signaling cascades, especially activation of the PI3K/Akt pathway, was found. In summary, our data suggest that PrP(c) is involved in sphingolipid-associated signaling, modulating pathways that exert anti-apoptotic functions, hence indicating that PrP(c) plays a role in neuroprotection.