Humans typically have a remarkable memory for faces. Nonetheless, in some cases they can be fooled. Experiments described in this paper provide new evidence for an effect in which observers falsely "recognize" a face that they have never seen before. The face is a chimera (prototype) built from parts extracted from previously viewed faces. It is known that faces of this kind can be confused with truly familiar faces, a result referred to as the prototype effect. However, recent studies have failed to find evidence for a full effect, one in which the prototype is regarded not only as familiar, but as more familiar than faces which have been seen before. This study sought to reinvestigate the effect. In a pair of experiments, evidence is reported for the full effect based on both an old/new discrimination task and a familiarity ranking task. The results are shown to be consistent with a recognition model in which faces are represented as combinations of reusable, abstract features. In a final experiment, novel predictions of the model are verified by comparing the size of the prototype effect for upright and upside-down faces. Despite the fundamentally piecewise nature of the model, an explanation is provided as to how it can also account for the sensitivity of observers to configural and holistic cues. This discussion is backed up with the use of an unsupervised network model. Overall, the paper describes how an abstract feature-based model can reconcile a range of results in the face recognition literature and, in turn, lessen currently perceived differences between the representation of faces and other objects.