Nanostructured CaWO4, CaWO4:Eu3+ and CaWO4:Tb3+ particles: sonochemical synthesis and luminescent properties

J Nanosci Nanotechnol. 2008 Mar;8(3):1183-90.

Abstract

Nanostructured CaWO4, CaWO4:Eu3+, and CaWO4:Tb3+ phosphor particles were synthesized via a facile sonochemical route. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, low voltage cathodoluminescence spectra, and photoluminescence lifetimes were used to characterize the as-obtained samples. The X-ray diffraction results indicate that the samples are well crystallized with the scheelite structure of CaWO4. The transmission electron microscopy and field emission scanning electron microscopy images illustrate that the powders consist of spherical particles with sizes from 120 to 160 nm, which are the aggregates of even smaller nanoparticles ranging from 10 to 20 nm. Under UV light or electron beam excitation, the CaWO4 powder exhibited a blue emission band with a maximum at 430 nm originating from the WO4/2- groups, while the CaWO4:Eu3+ powder showed red emission dominated by 613 nm ascribed to the 5D0 --> 7F2 of Eu3+, and the CaWO4:Tb3+ powders showed emission at 544 nm, ascribed to the 5D4 --> 7F5 transition of Tb3+. The PL excitation and emission spectra suggest that the energy is transferred from WO4/2- to Eu3+ CaWO4:Eu3+ and to Tb3+ in CaWO4:Tb3+. Moreover, the energy transfer from WO4/2- to Tb3+ in CaWO4:Tb3+ is more efficient than that from WO4/2- to EU3+ in CaWO4:Eu3+. This novel and efficient pathway could open new opportunities for further investigating the novel properties of tungstate materials.

Publication types

  • Research Support, Non-U.S. Gov't