Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

BMC Biotechnol. 2008 May 4:8:46. doi: 10.1186/1472-6750-8-46.

Abstract

Background: Hydroxycamptothecin (HCPT) has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol)-poly(gamma-benzyl-L-glutamate) (PEG-PBLG), and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM) was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC) detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT.

Results: The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 beta) of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax) of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 microg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p < 0.01). Tumor inhibition in the control group by PEG-PBLG nanoparticles was not observed (p > 0.05).

Conclusion: Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle-treated group showed a more sustained release, a longer circulation time, increased delivery to tissue, and an enhanced anticancer effect. HCPT-loaded nanoparticles appear to change the pharmacokinetic behavior of HCPT in vivo.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents, Phytogenic / administration & dosage
  • Antineoplastic Agents, Phytogenic / chemistry
  • Antineoplastic Agents, Phytogenic / pharmacokinetics
  • Camptothecin / administration & dosage
  • Camptothecin / analogs & derivatives*
  • Camptothecin / chemistry
  • Camptothecin / pharmacokinetics
  • Cell Line, Tumor
  • Colonic Neoplasms / drug therapy*
  • Colonic Neoplasms / pathology
  • Diffusion
  • Drug Carriers / administration & dosage
  • Drug Carriers / chemistry*
  • Metabolic Clearance Rate
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Nanoparticles / chemistry*
  • Nanoparticles / ultrastructure
  • Particle Size
  • Rabbits
  • Treatment Outcome

Substances

  • Antineoplastic Agents, Phytogenic
  • Drug Carriers
  • 10-hydroxycamptothecin
  • Camptothecin