Multiplex fluorescent in situ hybridization (M-FISH) is a recently developed chromosome imaging technique where each chromosome class appears to have a distinct color. This technique not only facilitates the detection of subtle chromosomal aberrations but also makes the analysis of chromosome images easier; both for human inspection and computerized analysis. In this paper, a novel method for segmentation and classification of M-FISH chromosome images is presented. The segmentation is based on the multichannel watershed transform in order to define regions of similar spatial and spectral characteristics. Then, a Bayes classifier, task-specific on region classification, is applied. Our method consists of four basic steps: 1) computation of the gradient magnitude of the image, 2) application of the watershed transform to decompose the image into a set of homogenous regions, 3) classification of each region, and 4) merging of similar adjacent regions. The method is evaluated using a publicly available chromosome image database and the obtained overall accuracy is 82.4%. By introducing the classification of each watershed region, the proposed method achieves substantially better results compared to other methods at a lower computational cost. The combination of the multichannel segmentation and the region-based classification is found to improve the overall classification accuracy compared to pixel-by-pixel approaches.