Rearrangement analysis of immunoglobulin genes is an exceptional opportunity to look back at the B lymphocyte differentiation during ontogeny and the subsequent immune response, and thus to study the selective pressures involved in autoimmune disorders. In a recent study to characterize the antigenic specificity of B lymphocytes during T1D progression, we generated hybridomas of islet-infiltrating B lymphocytes from NOD mice and other related strains developing insulitis, but with different degrees of susceptibility to T1D. We found that a sizable proportion of hybridomas produced monoclonal antibodies reactive to peripherin, an intermediate filament protein mainly found in the peripheral nervous system. Moreover, we found that anti-peripherin antibody-producing hybridomas originated from B lymphocytes that had undergone immunoglobulin class switch recombination, a characteristic of secondary immune response. Therefore, in the present study we performed immunoglobulin VL and VH analysis of these hybridomas to ascertain whether they were derived from B lymphocytes that had undergone antigen-driven selection. The results indicated that whereas some anti-peripherin hybridomas showed signs of oligoclonality, somatic hypermutation and/or secondary rearrangements (receptor edition and receptor revision), others seemed to directly derive from the preimmune repertoire. In view of these results, we conclude that anti-peripherin B lymphocytes are positively selected and primed in the course of T1D development in NOD mice, and reinforce the idea that peripherin is a relevant autoantigen targeted during T1D development in this animal model.