In the testis, the continuous production of sperm is maintained by a small population of stem cells called germ line stem cells (GSCs) in Drosophila, or spermatogonial stem cells (SSCs) in mammals. This stem cell population can self-renew or produce daughter cells that differentiate into mature sperm. In Drosophila, BMP signals inhibit GSC differentiation by blocking transcription of the gene bag of marbles (bam). Once bam is activated, germ cells initiate differentiation. We identified a novel gene in mouse, Gm114, that shows homology to Drosophila bam. In male germ cells, expression of Gm114 begins at 12.5-13.5 days post coitum (dpc), the stage in mice when germ cells cease proliferation and begin differentiation into prospermatogonia. In the adult testis, Gm114 is highly expressed in differentiated spermatocytes and spermatids but not in undifferentiated spermatogonia, strongly suggesting that, similar to Bam, GM114 plays an important role in mammalian germ line stem cell self-renewal and differentiation. Interestingly, deletion of the majority of the GM114 protein does not affect mouse viability or fertility. This suggests that either there is a function for the remaining N-terminal of GM114, or that there are alternative mechanisms in the mammalian system that control germ cell differentiation.