Chromosomal aberrations in tire plant workers and interaction with polymorphisms of biotransformation and DNA repair genes

Mutat Res. 2008 May 10;641(1-2):36-42. doi: 10.1016/j.mrfmmm.2008.02.007. Epub 2008 Mar 4.

Abstract

We evaluated chromosomal aberrations in lymphocytes of 177 workers exposed to xenobiotics in a tire plant and in 172 controls, in relation to their genetic background. Nine polymorphisms in genes encoding biotransformation enzymes and nine polymorphisms in genes involved in main DNA repair pathways were investigated for possible modulation of chromosomal damage. Chromosomal aberration frequencies were the highest among exposed smokers and the lowest in non-smoking unexposed individuals (2.5+/-1.8% vs. 1.7+/-1.2%, respectively). The differences between groups (ANOVA) were borderline significant (F=2.6, P=0.055). Chromosomal aberrations were higher in subjects with GSTT1-null (2.4+/-1.7%) than in those with GSTT1-plus genotype (1.8+/-1.4%; F=7.2, P=0.008). Considering individual groups, this association was significant in smoking exposed workers (F=4.4, P=0.040). Individuals with low activity EPHX1 genotype exhibited significantly higher chromosomal aberrations (2.3+/-1.6%) in comparison with those bearing medium (1.7+/-1.2%) and high activity genotype (1.5+/-1.2%; F=4.7, P=0.010). Both chromatid- and chromosome-type aberration frequencies were mainly affected by exposure and smoking status. Binary logistic regression analysis revealed that frequencies of chromatid-type aberrations were modulated by NBS1 Glu185Gln (OR 4.26, 95%CI 1.38-13.14, P=0.012), and to a moderate extent, by XPD Lys751Gln (OR 0.16, 95%CI 0.02-1.25, P=0.081) polymorphisms. Chromosome-type aberrations were lowest in individuals bearing the EPHX1 genotype conferring the high activity (OR 0.38, 95%CI 0.15-0.98, P=0.045). Present results show that exposed individuals in the tire production, who smoke, exhibit higher chromosomal aberrations frequencies, and the extent of chromosomal damage may additionally be modified by relevant polymorphisms.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Automobiles
  • Biotransformation
  • Case-Control Studies
  • Chemical Industry
  • Chromosome Aberrations / chemically induced*
  • DNA Damage / genetics
  • DNA Repair / genetics*
  • DNA Repair Enzymes / genetics*
  • Epoxide Hydrolases / genetics
  • Female
  • Genotype
  • Glutathione Transferase / genetics
  • Humans
  • Lymphocytes
  • Male
  • Occupational Exposure*
  • Polymerase Chain Reaction
  • Polymorphism, Restriction Fragment Length
  • Polymorphism, Single Nucleotide / genetics*
  • Rubber*
  • Xenobiotics
  • Xeroderma Pigmentosum Group D Protein / genetics

Substances

  • Xenobiotics
  • Rubber
  • glutathione S-transferase T1
  • Glutathione Transferase
  • Epoxide Hydrolases
  • EPHX1 protein, human
  • Xeroderma Pigmentosum Group D Protein
  • ERCC2 protein, human
  • DNA Repair Enzymes