Both protein kinases and phosphoprotein phosphatases are important components of signal transduction systems in cells. Recent studies in Alzheimer's disease (AD) have shown abnormal protein phosphorylation in the cortex suggesting an alteration in these enzymes. In the present study, an antibody against CD45 was used to analyze the status of this protein phosphotyrosine phosphatase in AD. We studied and quantified the immunohistochemical and immunochemical distribution of this integral membrane protein in control and AD brain. We found that anti-CD45 immunostained the great majority of microglia, both resting and activated. These cells were Ricinus communis agglutinin I positive and glial fibrillary acidic protein and neurofilament negative. The AD frontal cortex showed a 35% (P less than 0.01) increase in the number of anti-CD45 immunoreactive microglia as compared with controls. These results were consistent with the immunoblot quantification of CD45 immunoreactivity following native gel electrophoresis. In AD, 30% of the CD45-immunostained microglia were clustered in the neuritic plaques (about six per plaque) while the remaining 70% were scattered in the neuropil. The AD hippocampus showed an increase in CD45-immunoreactive microglia in the molecular layer of the dentate gyrus. At the ultrastructural level, CD45 immunoreactivity was localized exclusively to the plasma membrane of the microglia. The presence of the anti-CD45 immunoreactivity in microglia suggests the possibility that they may require the presence of CD45 as a cell surface receptor which may regulate cell function through modulation of intracellular signaling.