The pathogenesis of essential hypertension may possibly involve a deficiency in, or a decreased response to, endogenous vasodilator and natriuretic factor(s). Searching for hereditary or familial defects, it is plausible to evaluate blood pressure (BP) regulating factors in (yet) normotensive offspring of hypertensive parents (OHyp), some of whom are in fact in a stage of prehypertension. Studies by our group demonstrated that compared with healthy offspring of normotensive parents, OHyp have plasma atrial natriuretic (ANF) factor levels that are unaltered on a low salt intake but often fail to increase normally in response to a high salt intake. Plasma levels of cyclic GMP, the presumed second messenger of ANF, also may tend to be decreased in certain OHyp. On the other hand, renal excretory responses of cyclic GMP and electrolytes to ANF infused in "physiological" dose were unchanged in some OHyp tested so far. In borderline to moderate, uncomplicated essential hypertension, plasma ANF levels are often "normal." This may be inappropriately low relative to the existing BP, although the relationship of circulating ANF to atrial pressures in essential hypertension remains to be clarified. A conversion to higher plasma ANF values may occur with cardiac complications such as left ventricular hypertrophy, enlargement, dysfunction, or overt heart failure. Acute or short-term elevation of circulating ANF within the physiological and pathophysiological range by ANF infusion produces an exaggerated natriuresis and lowers BP in essential hypertensive patients. We postulate a syndrome of ANF deficiency, characterized by an impaired response of circulating ANF to high salt intake and by low cyclic GMP levels in certain yet normotensive offspring of essential hypertensive parents and by inappropriately "normal" plasma ANF in some patients with uncomplicated essential hypertension. At the stage of prehypertension, a disturbance in the ANF - cyclic GMP pathway may be expressed primarily at the circulatory rather than at the renal level. Hypertension-prone humans also tend to have an exaggerated vascular reactivity to norepinephrine. Whether the two disturbances may be interrelated is presently unknown. Both defects may potentially predispose to the development of essential hypertension. Relative ANF deficiency, an enhanced natriuretic response to ANF, and a sustained antihypertensive effect of infused ANF may represent a rational basis for treatment of essential hypertension with agents that activate the ANF system.