Keratinocyte growth factor-1 (KGF-1) is a member of the fibroblast growth factor (FGF) family FGF7 and is expressed in normal and wounded skin. KGF-1 is massively produced in the early stages of the wound healing process as well as during the later remodeling process (1, 2). We have studied the effects of the electroporation of a KGF-1 plasmid into excisional wounds of different rodent models mimicking diseases known to impair the normal wound healing process. We have used a genetically diabetic mouse model and a septic rat model in our experiments, and we have shown improvement of the healing rate (92% of the wounds are healed at day 12 vs. 40% of the control), the quality of epithelialization (histological score of 3.3 vs. 1.5), and the density of new blood vessels (85% more new blood vessels in the superficial layers than that of the control) (3, 4). Considering these results, we believe we can further explore the treatment modalities for using the electroporation-assisted transfection of DNA plasmid expression vectors of growth factors to enhance cutaneous wound healing.