pH-responsive nanoparticles for cancer drug delivery

Methods Mol Biol. 2008:437:183-216. doi: 10.1007/978-1-59745-210-6_10.

Abstract

Solid tumors have an acidic extracellular environment and an altered pH gradient across their cell compartments. Nanoparticles responsive to the pH gradients are promising for cancer drug delivery. Such pH-responsive nanoparticles consist of a corona and a core, one or both of which respond to the external pH to change their soluble/insoluble or charge states. Nanoparticles whose coronas become positively charged or become soluble to make their targeting groups available for binding at the tumor extracellular pH have been developed for promoting cellular targeting and internalization. Nanoparticles whose cores become soluble or change their structures to release the carried drugs at the tumor extracellular pH or lysosomal pH have been developed for fast drug release into the extracellular fluid or cytosol. Such pH-responsive nanoparticles have therapeutic advantages over the conventional pH-insensitive counterparts.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage*
  • Antineoplastic Agents / therapeutic use
  • Drug Delivery Systems*
  • Humans
  • Hydrogen-Ion Concentration
  • Nanoparticles*
  • Neoplasms / drug therapy*

Substances

  • Antineoplastic Agents