Caveolin-1 (cav-1) is a major structural protein of caveolae, small invaginations of the plasma membrane that integrate and regulate signaling pathways involved in cell growth and differentiation. We previously generated a genetically engineered mice that are homozygous for a null mutation in exon 2 of cav-1 and documented increased incidence of urolithiasis in young male cav-1(-/-) mice. We attributed this, in part, to improper localization of plasma membrane calcium/calmodulin-dependent calcium ATPase in the distal convoluted tubules of the kidney. To document pathologies related to cav-1 function, we maintained cav-1(-/-) and control cav-1(+/+) mice for an extended time period. We report here that cav-1(-/-) mice demonstrate organ-specific growth-related disorders in stromal cells that normally have high levels of cav-1 expression. In many of these organs, epithelial cell growth/differentiation abnormalities were also observed, yet in most of these sites the epithelial cells normally express low to non-detectable levels of cav-1. We propose that loss of cav-1 function in stromal cells of various organs directly leads to a disorganized stromal compartment that, in turn, indirectly promotes abnormal growth and differentiation of adjacent epithelium.