Background: Allogeneic tolerance can be reliably obtained with monoclonal antibody therapy targeting CD45RB. Although regulatory T cells play an important role in the mechanism, we have recently demonstrated the active participation of host B lymphocytes. After anti-CD45RB therapy, B lymphocytes demonstrate phenotypic alterations that include up-regulation of CD54 (intercellular adhesion molecule [ICAM]-1). We have investigated the hypothesis that alteration in ICAM-1 expression is required for tolerance induction.
Materials and methods: Recipients of heterotopic allogeneic cardiac grafts (C3H donors into B6 recipients) were treated with anti-CD45RB, anti-ICAM, anti-lymphocyte function-associated antigen-1 (LFA), or the combination of these agents. These data were extended by performing allogeneic cardiac transplants into ICAM or LFA recipients treated with a 5-day course of anti-CD45RB. Finally, B-cell-deficient animals were reconstituted with ICAM splenocytes to create a recipient with a selective deficiency of ICAM-1 restricted to the B-cell compartment.
Results: Anti-CD45RB alone or the combination of anti-LFA/anti-ICAM reliably induced transplantation tolerance. However, the triple combination was routinely unsuccessful and induced long-term graft survival in no recipients. ICAM-deficient or LFA-deficient recipients were also resistant to tolerance induced by anti-CD45RB. Finally, transfer of control splenocytes to B-cell-deficient recipients permitted anti-CD45RB-induced tolerance, whereas transfer of ICAM cells was unable to support tolerance induction.
Conclusions: Expression of ICAM-1 by B lymphocytes and interaction with LFA-1 form a central aspect of transplantation tolerance induced by anti-CD45RB therapy. These data further elucidate the cellular mechanisms used by B lymphocytes in the induction of transplantation tolerance.