Personal exposure to particle-phase molecular markers was measured at a trucking terminal in St Louis, MO, as part of a larger epidemiologic project aimed at assessing carbonaceous fine particulate matter (PM) exposure in this occupational setting. The integration of parallel personal exposure, ambient worksite area and ambient urban background (St Louis Supersite) measurements provided a unique opportunity to track the work-related exposure to carbonaceous fine PM in a freight terminal. The data were used to test the proposed personal exposure model in this occupational setting: To accurately assess the impact of PM emission sources, particularly motor vehicle exhaust, and organic elemental carbon (OCEC) analysis and nonpolar organic molecular marker analysis by thermal desorption-gas chromatography/mass spectrometry (TD-GCMS) were conducted on all of the PM samples. EC has been used as a tracer for diesel exhaust in urban areas, however, the emission profile for diesel exhaust is dependent upon the operating conditions of the vehicle and can vary considerably within a fleet. Hopanes, steranes, polycyclic aromatic hydrocarbons and alkanes were measured by TD-GCMS. Hopanes are source-specific organic molecular markers for lubricating oil present in motor vehicle exhaust. The concentrations of OC, EC and the organic tracers were averaged to obtain average profiles to assess differences in the personal, worksite area and urban background samples, and were also correlated individually by sample time to evaluate the exposure model presented above. Finally, a chemical mass balance model was used to apportion the motor vehicle and cigarette-smoke components of the measured OC and EC for the average personal exposure, worksite area and urban background samples.