Four novel polyoxotungstates have been synthesized by reaction of the sandwich type compound [Fe (III) 4(H 2O) 10(B-beta-SbW 9O 33) 2] (6-) (noted Fe 4(H 2O) 10Sb 2W 18) with ethylenediamine (en) and/or oxalate (ox) ligands under various conditions. The one-dimensional (1D) compound [enH 2] 3[Fe (III) 4(H 2O) 8(SbW 9O 33) 2].20H 2O ( 1) is isolated at 130 degrees C and results from the elimination of two water molecules and the condensation of the polyoxotungstate precursor. The reaction of Fe 4(H 2O) 10Sb 2W 18 with oxalate ligands affords the molecular complex Na 14[Fe (III) 4(ox) 4(H 2O) 2(SbW 9O 33) 2].60H 2O ( 2) where two organic ligands substitute four water molecules, while the same reaction in the presence of en molecules at 130 degrees C leads to the formation of the functionalized 1D chain [enH 2] 7[Fe (III) 4(ox) 4(SbW 9O 33) 2].14H 2O ( 3) with protonated ethylenediamine counterions. Finally, at 160 degrees C a rearrangement of the Fe 4(H 2O) 10Sb 2W 18 polyoxotungstate is observed, and the sandwich type compound [enH 2] 5[Fe (II) 2Fe (II) 2(enH) 2(Fe (III)W 9O 34) 2].24H 2O ( 4) crystallizes. In 4, the heteroelement is a Fe (III) ion, and the water molecules on the two outer Fe (II) centers are bound to pendant monoprotonated en ligands. The four compounds have been characterized by IR spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. A detailed study of the magnetic properties of the mixed-valent hexanuclear iron complex in 4 shows evidence of an S = 5 ground-state because of spin frustration effects. A quantification of the electronic parameters characterizing the ground state ( D = +1.12 cm (-1), E/ D = 0.15) confirms that polyoxotungstate ligands induce large magnetic anisotropy.