Computed tomography (CT) imaging of the heart, most prominently coronary CT angiography, is currently subject to intense interest and is increasingly incorporated into clinical decision-making. In spite of tremendous progress in CT technology over the past decade, the limited temporal resolution has remained one of the most severe problems, especially for cardiac imaging. The novel design concept of dual-source CT (DSCT) allows for an effective scan time of 83 ms independent of heart rate. While large trials are still missing, initial studies have shown improved image quality, especially for visualizing the coronary arteries and detecting coronary artery stenoses. Further investigations have shown that routine beta blockade to lower the heart rate is not necessary to reliably achieve diagnostic image quality. Other applications that may particularly benefit from increased temporal resolution are the analysis of ventricular function and of the cardiac valves. Dose issues which are of interest for cardiac CT in general are discussed in some detail, including a quantitative analysis of dose values and three-dimensional dose distributions. Various strategies to lower radiation exposure are available today, and DSCT offers specific potential for this.