An important endpoint in assessing pollution-related toxicity is genotoxicity. To obtain insight into the time-course of oxidative- and alkylation-induced DNA damage in the freshwater mussel, Unio pictorum, mussels were exposed for 24 hr to concentration gradients of pro-oxidant hydrogen peroxide (H(2)O(2)) and a mono-functional alkylating agent, ethyl methanesulfonate (EMS). DNA damage was assessed in haemocytes immediately upon exposure and over the recovery period of up to 72 days by means of comet and micronucleus assays. Following exposure to H(2)O(2), DNA damage as detected by the comet assay returned to control values after one day, except for the mussels exposed to the highest dose when damage was detectable for the next 3 days. In contrast, alkylation-induced DNA damage was detectable even after 72 days of recovery in de-chlorinated water, with a dose-response relationship observable throughout the whole recovery period. Micronucleus frequency was the highest on Day 3 after exposure to EMS; it decreased considerably by Day 7 and returned almost to the control levels 19 days after exposure, while no significant induction of micronuclei was observed in mussels exposed to H(2)O(2). Although the comet assay is considered a biomarker of recent genotoxic exposure, detecting DNA damage of shorter longevity than with the micronucleus assay, results presented here show that in the case of alkylation damage the comet assay reveals genotoxic exposure of U. pictorum in a dose-dependent manner even after 2 months.
2007 Wiley-Liss, Inc