Ca2+/CaM controls Ca2+-dependent inactivation of NMDA receptors by dimerizing the NR1 C termini

J Neurosci. 2008 Feb 20;28(8):1865-70. doi: 10.1523/JNEUROSCI.5417-07.2008.

Abstract

Ca2+ influx through NMDA receptors (NMDARs) leads to channel inactivation, which limits Ca2+ entry and protects against excitotoxicity. Extensive functional data suggests that this Ca2+-dependent inactivation (CDI) requires both calmodulin (CaM) binding to the C0 cassette of the NR1 subunit's C terminus (CT) and regulation by alpha-actinin-2, but a molecular understanding of CDI has been elusive. Here we used a number of methods to analyze the molecular nature of the interaction among CaM, alpha-actinin-2, and the NR1 CT. We found that a single CaM binds to two NR1 CTs in a Ca2+-dependent manner and promotes their reversible "dimerization." Expressed NMDARs containing NR1 concatamers in which the NR1 C termini are "uncoupled" display markedly reduced CDI. In contrast to current models, alpha-actinin-2 does not bind to the NR1 CT. We propose a new model for CDI in which the noncanonical Ca2+/CaM-dependent dimerization of the two NR1 subunits inactivates the channel by propagating a conformational change from the short NR1 CT to the nearby channel pore.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Binding Sites / physiology
  • Calcium / metabolism*
  • Calmodulin / metabolism*
  • Cell Line
  • Dimerization
  • Humans
  • Receptors, N-Methyl-D-Aspartate / antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate / chemistry*
  • Receptors, N-Methyl-D-Aspartate / metabolism*

Substances

  • Calmodulin
  • NR1 NMDA receptor
  • Receptors, N-Methyl-D-Aspartate
  • Calcium