We report here the discovery of an attenuation mechanism of classic swine fever virus (CSFV) induced by introduction of a continuous 12-nt (CUUUUUUCUUUU) insertion in viral 3' UTR. The 12-nt insertion sequence was first found in one attenuated vaccine strain HCLV (Hog Cholera Lapinized Virus) which did not exist in other CSFV strains. To address the function of the 12-nt insertion in viral replication and attenuation, we constructed and analyzed two chimeras stemmed from a highly virulent strain Shimen either with introduction of the 12-nt insertion in 3' UTR or the replacement of viral 3' UTR by the 3' UTR of HCLV. We found that the two chimeras' maximum titers declined approximately 100-fold than their parental strain Shimen in PK15 cells. An animal experiment showed that the two chimeras were both dramatically attenuated in pigs. All the chimera-infected pigs survived infection and remained clinically normal with the exception of a transient fever while the 100% mortality was observed for the Shimen-infected pigs. In addition, the two chimeras can induce neutralization antibody to completely protect the pigs against lethal challenge with highly virulent CSFV, which was similar to the vaccine strain HCLV. These data demonstrate that the 12-nt insertion in 3' UTR is sufficient for the attenuation of CSFV. Taken together, a novel attenuation mechanism of CSFV is found and may pave a way to further research for new attenuated vaccine.