Purpose: We present planning and early clinical outcomes of a study of intensity-modulated radiotherapy (IMRT) for locally advanced prostate cancer.
Methods and materials: A total of 43 patients initially treated with an IMRT plan delivering 50 Gy to the prostate, seminal vesicles, and pelvic lymph nodes, followed by a conformal radiotherapy (CRT) plan delivering 20 Gy to the prostate and seminal vesicles, were studied. Dose-volume histogram (DVH) data for the added plans were compared with dose-volume histogram data for the sum of two CRT plans for 15 cases. Gastrointestinal (GI) and genitourinary (GU) toxicity, based on the Radiation Therapy Oncology Group scoring system, was recorded weekly throughout treatment as well as 3 to 18 months after treatment and are presented.
Results: Treatment with IMRT both reduced normal tissue doses and increased the minimum target doses. Intestine volumes receiving more than 40 and 50 Gy were significantly reduced (e.g., at 50 Gy, from 81 to 19 cm(3); p = 0.026), as were bladder volumes above 40, 50, and 60 Gy, rectum volumes above 30, 50, and 60 Gy, and hip joint muscle volumes above 20, 30, and 40 Gy. During treatment, Grade 2 GI toxicity was reported by 12 of 43 patients (28%), and Grade 2 to 4 GU toxicity was also observed among 12 patients (28%). With 6 to 18 months of follow-up, 2 patients (5%) experienced Grade 2 GI effects and 7 patients (16%) experienced Grade 2 GU effects.
Conclusions: Use of IMRT for pelvic irradiation in prostate cancer reduces normal tissue doses, improves target coverage, and has a promising toxicity profile.