Electroporation is widely used to achieve gene transfection. A common problem in electroporation is that it has a lower viability than any other transfection method. In this study, we developed a novel electroporation device using a capillary tip and a pipette that was effective on a wide range of mammalian cells, including cell lines, primary cells, and stem cells. The capillary electroporation system considerably reduced cell death during electroporation because of its wire-type electrode, which has a small surface area. The experimental results also indicated that the cell viability was dependent on the change in pH induced by electrolysis during electroporation. Additionally, the use of a long and narrow capillary tube combined with simple pipetting shortened the overall time of the electroporation process by up to 15 min, even under different conditions with 24 samples. These results were supported by comparison with a conventional electroporation system. The transfection rate and the cell viability were enhanced by the use of the capillary system, which had a high transfection rate of more than 80% in general cell lines such as HeLa and COS-7, and more than 50% in hard-to-transfect cells such as stem or primary cells. The viability was approximately 70-80% in all cell types used in this study.