The fungal proteins of the White Collar photoreceptor family, represented by WC-1 from Neurospora crassa, mediate the control by light of different biochemical and developmental processes, such as carotenogenesis or sporulation. Carotenoid biosynthesis is induced by light in the gibberellin-producing fungus Fusarium fujikuroi. In an attempt to identify the photoreceptor for this response, we cloned the only WC-1-like gene present in the available Fusarium genomes, that we called wcoA. The predicted WcoA polypeptide is highly similar to WC-1 and contains the relevant functional domains of this protein. In contrast to the Neurospora counterpart, wcoA expression is not affected by light. Unexpectedly, targeted wcoA disruptant strains maintain the light-induced carotenogenesis. Furthermore, the wcoA mutants show a drastic reduction of fusarin production in the light, and produce less gibberellins and more bikaverins than the parental strain under nitrogen-limiting conditions. The changes in the production of the different products indicate a key regulatory role for WcoA in secondary metabolism of this fungus. Additionally, the mutants are severely affected in conidiation rates under different culture conditions, indicating a more general regulatory role for this protein.