Pulmonary artery hypertension in a child with MELAS due to a point mutation of the mitochondrial tRNA((Leu)) gene (m.3243A>G)

J Inherit Metab Dis. 2008 Dec:31 Suppl 3:497-503. doi: 10.1007/s10545-007-0735-3. Epub 2008 Jan 7.

Abstract

Although linked with cardiac dysfunction, the association of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) and pulmonary artery hypertension (PAH) has not been previously described. PAH and right ventricular heart failure were identified by echocardiography in a 3-year-old boy with a history of hypotonia, microcephaly and developmental delay. He initially presented with a 10-day history of dyspnoea, dependent oedema and reduced oral intake. Lactic acidosis was noted on serial arterial blood sampling and cerebrospinal fluid. Muscle biopsy demonstrated cytochrome-c oxidase-positive 'ragged-red' fibres consistent with MELAS; subsequent analyses revealed the m.3243A>G point mutation most commonly associated with MELAS. The mutation was heteroplasmic, representing 92% of the total mtDNA from a lung sample. Nitric oxide and epoprostenol were administered without significant clinical or echocardiographic improvement of his PAH. A 'mitochondrial cocktail' including biotin, riboflavin, carnitine and coenzyme Q10 also was provided. Five months after presentation, he developed seizures; MRI imaging of his brain demonstrated multiple focal lesions. His clinical status worsened with increasing cardiopulmonary failure. He died two months later. Although therapy for both MELAS and PAH remains limited, recent investigations suggest a beneficial role for l-arginine in both conditions, implying a possible common pathophysiology. Mitochondrial diseases such as MELAS should be considered in cases of idiopathic PAH, particularly when associated with multisystem involvement including short stature, hearing loss, renal dysfunction, retinopathy, diabetes mellitus, migraines, seizures, ophthalmoplegia, fatigability and weakness.