Purpose: This study investigated putative correlations among behavioral changes and: (1) neuronal loss, (2) hippocampal mossy fiber sprouting, and (3) reactive astrogliosis in adult rats submitted to early-life LiCl-pilocarpine-induced status epilepticus (SE).
Methods: Rats (P15) received LiCl (3 mEq/kg, i.p.) 12-18 h prior pilocarpine (60 mg/kg; s.c.). At adulthood, animals were submitted to behavioral tasks and after the completion of tasks biochemical and histological analysis were performed.
Results: In SE group, it was observed an increased number of degenerating neurons in the CA1 subfield and in the hilus of animals 24 h after SE. At adulthood, SE group presented an aversive memory deficit in an inhibitory avoidance task and the animals that presented lower latency to the step down showed a higher score for mossy fiber sprouting. In the light-dark exploration task, SE rats returned less and spent less time in the light compartment and present an increased number of risk assessment behavior (RA). There was a negative correlation between the time spent in the light compartment and the score for mossy fiber sprouting and a positive correlation between score for mossy fiber sprouting and number of RA. LiCl-pilocarpine-treated animals showed higher levels of S100B immunocontent in the CSF as well as a positive correlation between the score for sprouting and the GFAP immunocontent in the CA1 subfield, suggesting an astrocytic response to neuronal injury.
Conclusions: We showed that LiCl-pilocarpine-induced SE during development produced long-lasting behavioral abnormalities, which might be associated with mossy fiber sprouting and elevated CSF S100B levels at adulthood.