Objective: To investigate phospholipids-based microbubbles induced sonoporation and cell membrane reseal in vitro under various conditions.
Methods: A breast cancer cell line SK-BR-3 was used to investigate ultrasonic sonoporation under various conditions. Atomic force microscopy (AFM) scanning techniques were employed to observe the change of membrane pores.
Results: Normal SK-BR-3 cells membrane pores were evenly distributed and less than 1 microm. After ultrasound exposure, membrane pores were enlarged at different degree depending on ultrasound exposure durations, filling gas species and microbubble suspension concentration. With microbubble suspension concentration being increased to 5% or ultrasound exposure reached 30 s, membrane pores in fluorocarbon (C(3)F(8) or SF(6))-filled microbubble groups exceeded 1 microm, which were significantly larger than that of air-filled microbubble group. Membrane pores were about 2-3 microm under ultrasound 60 s with 5% fluorocarbon-filled microbubble suspension. After 24 h of incubation, most of the enlarged membrane pores could reseal to normal size, which corresponded to cell viability.
Conclusions: Membrane pores can be obviously enlarged by ultrasonic sonoporation of fluorocarbon-filled microbubbles, whose reseal time depended on ultrasound exposure duration and microbubble suspension concentration.