An experimental study of decoupling sequences for multiple-quantum and high-resolution MAS experiments in solid-state NMR

Magn Reson Chem. 2008 Feb;46(2):166-9. doi: 10.1002/mrc.2153.

Abstract

Recently, a sequence for heteronuclear dipolar decoupling in solid-state NMR, namely SWf-TPPM, was introduced by us. Under magic-angle spinning (MAS), the decoupling efficiency of the sequence was unaffected over a range of values for various experimental parameters such as the pulse length, pulse phase, and 1H resonance offset. We here demonstrate its use in multiple-quantum (MQ) and high-resolution (HR) MAS experiments. This sequence further improves the MQMAS spectra compared to the earlier reported decoupling sequences with improved immunity to any missets of the pulse length, pulse phase and decoupler offset. In contrast, for HRMAS, the simple CW scheme is as efficient as any of the decoupling schemes that were studied.