P-glycoprotein (P-gp) mediated multidrug resistance (MDR) is one of the main obstacles in tumour chemotherapy. A promising approach to reverse MDR is the combined use of nontoxic and potent P-gp inhibitor with conventional anticancer drugs. We have examined the potential of a newly synthesized tetrahydroisoquinoline derivative B3 as a MDR-reversing agent. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to examine the effect of B3 on the cytotoxicity in K562/A02 and MCF-7/ADM cells caused by doxorubicin (adriamycin). Accumulation and efflux of P-gp substrate rhodamine123 in K562/A02 and primary cultured rat brain microvessel endothelial cells (RBMECs) were measured to evaluate the inhibitory effect of B3 on P-gp. The K562/A02 xenograft model in nude mice was established to examine MDR-reversing efficacy of B3 in-vivo. The results indicated that co-administration of B3 resulted in an increase on chemosensitivity of K562/A02 and MCF-7/ADM cells to doxorubicin in a dose-dependent manner. Rhodamine123 accumulation in K562/A02 cells and RBMECs were significantly enhanced after the incubation with various concentrations of B3. Furthermore, B3 inhibited the efflux of rhodamine123 from RBMECs. Co-administration of B3 with doxorubicin significantly decreased weight and volume of tumour in nude mice. In conclusion, B3 is a novel and potent MDR reversal agent with the potential to be an adjunctive agent for tumour chemotherapy.