We previously showed that interleukin-1beta (IL-1beta) down-regulation of type II TGFbeta receptor (TbetaRII) involves NFkappaB pathway and requires de novo synthesis of a yet unknown protein. Here, we demonstrate that this effect is mediated through Sp1 site located at position -25 of human TbetaRII promoter. Inhibition of transcription factors binding (decoy oligonucleotides or mithramycin) abolished IL-1beta effect. EMSA and ChIP revealed that this treatment induced Sp3 binding to cis-sequence whereby IL-1beta exerts its transcriptional effects whereas it decreased that of Sp1. Moreover, although the cytokine did not modulate Sp1 expression, it increased that of Sp3 via NFkappaB pathway. Experiments of gain and loss of function clearly showed that Sp3 inhibited TbetaRII expression whereas its silencing abolished IL-1beta effect. In addition, both Sp1 and Sp3 were found to interact with NFkappaB, which therefore may indirectly interact with TbetaRII pro moter. Altogether, these data suggest that IL-1beta decreases TbetaRII expression by inducing Sp3 via NFkappaB and its binding on core promote at the expense of Sp1, which could explain the loss of cell responsiveness in certain conditions. These findings bring new insights in the knowledge of the interference between two antagonistic transduction pathways involved in multiple physiopathological processes.