Bacterial prodiginines are a family of red-pigmented, tripyrrolic compounds that display numerous biological activities, including antibacterial, antifungal, antiprotozoal, antimalarial, immunosuppressive and anticancer properties. Recently, significant progress has been made in understanding the biosynthesis and regulation of bacterial prodiginines. An understanding of the biosynthesis of prodiginines will allow engineering of bacterial strains capable of synthesizing novel prodiginines through rational design and mutasynthesis experiments. Bacterial prodiginines and synthetic derivatives are effective proapoptotic agents with multiple cellular targets, and they are active against numerous cancer cell lines, including multidrug-resistant cells, with little or no toxicity towards normal cell lines. A synthetic derivative, GX15-070 (Obatoclax), developed through structure-activity relationship studies of the pyrrolic ring A of GX15, is in multiple Phase I and II clinical trials in both single and dual-agent studies to treat different types of cancer. Therefore, prodiginines have real therapeutic potential in the clinic.