Practically modified attenuated total reflection surface-enhanced IR absorption spectroscopy for high-quality frequency-extended detection of surface species at electrodes

Anal Chem. 2008 Jan 1;80(1):166-71. doi: 10.1021/ac7017487. Epub 2007 Nov 28.

Abstract

A practically modified ATR configuration has been proposed for in situ electrochemical surface-enhanced IR absorption spectroscopy (SEIRAS) by sandwiching an ultrathin water interlayer between a hemicylindrical ZnSe prism and a Si wafer as an integrated window. This new ATR optics significantly enhances the throughput of an effective IR beam across the ZnSe/gap/Si/metal film, enabling high-quality spectral fingerprints down to 700 cm(-1) to be readily detected at larger incidence angles without compromising the electrochemical feasibility and stability of metallic films deposited on Si. The advantages of this modified ATR-SEIRAS have been initially applied to explore two selected systems: wide-ranged in situ ATR-SEIRA spectra provided strong evidence in support of the formate intermediate pathway for methanol electrooxidation at the Pt electrode in an acid solution; in addition, new spectral fingerprints revealed comprehensive orientational information about of the p-nitrobenzoate species at Pt electrode as a result of the dissociative adsorption of p-nitrobenzoic acid molecules from an acid solution.