The mechanism of triplet-triplet energy transfer in the peridinin-chlorophyll-protein (PCP) from Amphidinium carterae was investigated by time-resolved EPR (TR-EPR). The approach exploits the concept of spin conservation during triplet-triplet energy transfer, which leads to spin polarization conservation in the observed TR-EPR spectra. The acceptor (peridinin) inherits the polarization of the donor (chlorophyll) in a way which depends on the relative geometrical arrangement of the donor-acceptor couple. Starting from the initially populated chlorophyll triplet state and taking the relative positions among Chls and peridinins from the X-ray structure of PCP, we calculated the expected triplet state polarization of any peridinin in the complex. Comparison with the experimental data allowed us to propose a path for triplet quenching in the protein. The peridinin-chlorophyll pair directly involved in the triplet-triplet energy transfer coincides with the one having the shortest center to center distance. A water molecule, which is coordinated to the central Mg atom of the Chl, is also placed in close contact with the peridinin. The results support the concept of localization of the triplet state mainly in one specific peridinin in each of the two pigment subclusters related by a pseudo C2 symmetry.