Developmental expression of Ca2+-permeable AMPA receptors underlies depolarization-induced long-term depression at mossy fiber CA3 pyramid synapses

J Neurosci. 2007 Oct 24;27(43):11651-62. doi: 10.1523/JNEUROSCI.2671-07.2007.

Abstract

Many central excitatory synapses undergo developmental alterations in the molecular and biophysical characteristics of postsynaptic ionotropic glutamate receptors via changes in subunit composition. Concerning AMPA receptors (AMPARs), glutamate receptor 2 subunit (GluR2)-containing, Ca2+-impermeable AMPARs (CI-AMPARs) prevail at synapses between mature principal neurons; however, accumulating evidence indicates that GluR2-lacking, Ca2+-permeable AMPARs (CP-AMPARs) contribute at these synapses early in development. Here, we used a combination of imaging and electrophysiological recording techniques to investigate potential roles for CP-AMPARs at developing hippocampal mossy fiber-CA3 pyramidal cell (MF-PYR) synapses. We found that transmission at nascent MF-PYR synapses is mediated by a mixed population of CP- and CI-AMPARs as evidenced by polyamine-dependent inwardly rectifying current-voltage (I-V) relationships, and partial philanthotoxin sensitivity of synaptic events. CP-AMPAR expression at MF-PYR synapses is transient, being limited to the first 3 postnatal weeks. Moreover, the expression of CP-AMPARs is regulated by the PDZ (postsynaptic density-95/Discs large/zona occludens-1) domain-containing protein interacting with C kinase 1 (PICK1), because MF-PYR synapses in young PICK1 knock-out mice are philanthotoxin insensitive with linear I-V relationships. Strikingly, MF-PYR transmission via CP-AMPARs is selectively depressed during depolarization-induced long-term depression (DiLTD), a postsynaptic form of MF-PYR plasticity observed only at young MF-PYR synapses. The selective depression of CP-AMPARs during DiLTD was evident as a loss of postsynaptic CP-AMPAR-mediated Ca2+ transients in PYR spines and reduced rectification of MF-PYR synaptic currents. Preferential targeting of CP-AMPARs during DiLTD is further supported by a lack of DiLTD in young PICK1 knock-out mice. Together, these findings indicate that the transient participation of CP-AMPARs at young MF-PYR synapses dictates the developmental window to observe DiLTD.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Calcium / metabolism*
  • Gene Expression Regulation, Developmental / physiology*
  • Long-Term Synaptic Depression / physiology*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Mossy Fibers, Hippocampal / growth & development*
  • Mossy Fibers, Hippocampal / metabolism
  • Neurons / physiology
  • Pyramidal Cells / growth & development
  • Pyramidal Cells / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, AMPA / biosynthesis*
  • Receptors, AMPA / genetics
  • Receptors, AMPA / metabolism
  • Synapses / physiology*
  • Synaptic Transmission / physiology

Substances

  • Receptors, AMPA
  • Calcium