Glutamate-354 of the CP43 polypeptide interacts with the oxygen-evolving Mn4Ca cluster of photosystem II: a preliminary characterization of the Glu354Gln mutant

Philos Trans R Soc Lond B Biol Sci. 2008 Mar 27;363(1494):1179-87; discussion 1187-8. doi: 10.1098/rstb.2007.2213.

Abstract

In the recent X-ray crystallographic structural models of photosystem II, Glu354 of the CP43 polypeptide is assigned as a ligand of the O2-evolving Mn4Ca cluster. In this communication, a preliminary characterization of the CP43-Glu354Gln mutant of the cyanobacterium Synechocystis sp. PCC 6803 is presented. The steady-state rate of O2 evolution in the mutant cells is only approximately 20% compared with the wild-type, but the kinetics of O2 release are essentially unchanged and the O2-flash yields show normal period-four oscillations, albeit with lower overall intensity. Purified PSII particles exhibit an essentially normal S2 state multiline electron paramagnetic resonance (EPR) signal, but exhibit a substantially altered S2-minus-S1 Fourier transform infrared (FTIR) difference spectrum. The intensities of the mutant EPR and FTIR difference spectra (above 75% compared with wild-type) are much greater than the O2 signals and suggest that CP43-Glu354Gln PSII reaction centres are heterogeneous, with a minority fraction able to evolve O2 with normal O2 release kinetics and a majority fraction unable to advance beyond the S2 or S3 states. The S2-minus-S1 FTIR difference spectrum of CP43-Glu354Gln PSII particles is altered in both the symmetric and asymmetric carboxylate stretching regions, implying either that CP43-Glu354 is exquisitely sensitive to the increased charge that develops on the Mn4Ca cluster during the S1-->S2 transition or that the CP43-Glu354Gln mutation changes the distribution of Mn(III) and Mn(IV) oxidation states within the Mn4Ca cluster in the S1 and/or S2 states.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Calcium / chemistry*
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • Electron Spin Resonance Spectroscopy
  • Glutamic Acid / chemistry*
  • Glutamic Acid / genetics
  • Manganese / chemistry*
  • Mutagenesis, Site-Directed
  • Oxygen / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / chemistry*
  • Photosynthetic Reaction Center Complex Proteins / genetics
  • Photosystem II Protein Complex / chemistry*
  • Photosystem II Protein Complex / genetics
  • Spectroscopy, Fourier Transform Infrared
  • Synechocystis / chemistry
  • Synechocystis / genetics
  • Thermodynamics

Substances

  • DNA, Bacterial
  • Photosynthetic Reaction Center Complex Proteins
  • Photosystem II Protein Complex
  • photosystem II, chlorophyll binding protein, CP-43
  • Glutamic Acid
  • Manganese
  • Oxygen
  • Calcium