Despite active investigation of copolymer-1 (Cop-1) for nearly 40 years the mechanisms underlying its neuroprotective properties remain contentious. Nonetheless, current dogma for Cop-1 neuroprotective activities in autoimmune and neurodegenerative diseases include bystander suppression of autoimmune T cells and attenuation of microglial responses. In this report, we demonstrate that Cop-1 interacts directly with primary human neurons and decreases neuronal cell death induced by staurosporine or oxidative stress. This neuroprotection is mediated through protein kinase Calpha and brain-derived neurotrophic factor. Dendritic cells (DC) uptake Cop-1, deliver it to the injury site, and release it in an active form. Interactions between Cop-1 and DC enhance DC blood brain barrier migration. In a rat model with optic nerve crush injury, Cop-1-primed DC induce T cell independent neuroprotection. These findings may facilitate the development of neuroprotective approaches using DC-mediated Cop-1 delivery to diseased nervous tissue.